
Dynamic Data-Flow Testing

Mattia Vivanti

University of Lugano

Faculty of Informatics

Lugano, Switzerland 6904

mattia.vivanti@usi.ch

ABSTRACT
Data-flow testing techniques have long been discussed in the
literature, yet to date they are still of little practical rele-
vance. The applicability of data-flow testing is limited by
the complexity and the imprecision of the approach: writing
a test suite that satisfy a data-flow criterion is challenging
due to the presence of many test objectives that include in-
feasible elements in the coverage domain and exclude feasible
ones that depend on aliasing and dynamic constructs.

To improve the applicability and e↵ectiveness of data-flow
testing we need both to augment the precision of the cov-
erage domain by including data-flow elements dependent on
aliasing and to exclude infeasible ones that reduce the total
coverage.

In my PhD research I plan to address these two problems
by designing a new data-flow testing approach that com-
bines automatic test generation and dynamic identification
of data-flow elements that can identify precise test targets
by monitoring the program executions.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools (e.g., data generators, coverage testing)

General Terms
Measurement, Verification

Keywords
Data-flow testing, dynamic data-flow analysis

1. PROBLEM STATEMENT
Data-flow testing has been investigated since the late sev-

enties as an alternative approach to classic control flow test-
ing criteria. Aiming at more thorough measures of the ade-
quacy of test suites, in the 1976 Herman firstly proposed to
estimate the e↵ectiveness of a test suites as the fraction of
definitions and uses of variables exercised by test cases [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/06 ...$15.00.

Since then, data-flow testing has been widely investigated
and developed, and has shown great potentiality especially
in the context of object oriented systems [14, 4, 2, 18, 7,
15, 3]. Despite the amount of work on the topic, data-flow
testing is rarely used in practice and the experimental data
about its applicability are still limited and inconclusive.

This is mainly due to both the di�culty of generating
test suites that guarantee good coverage and the lack of
understanding of the scalability of the approach. Data-flow
testing criteria require to cover many more elements than
control-flow based criteria, and include many test objectives
that are either di�cult to satisfy or infeasible.

The complex inter-procedural control-flow and the usage
of dynamic constructs such as aliasing and polymorphism di-
rectly a↵ect the precision of the computation of the coverage
domain. Static data-flow analysis techniques that are used
to identify data-flow coverage targets both include infeasible
elements in the coverage domain, and exclude feasible ones
that depend on aliasing and dynamic constructs. As a result,
the testing e↵ort for data-flow testing is diverted by the pres-
ence of many infeasible elements, and the meaningfulness of
the coverage metrics is weakened both by the inclusion of
infeasible elements and the exclusion of feasible ones.

Up to date, the few attempts towards automatic data-flow
testing tackle the problems of complexity and imprecision by
either targeting simple programs or relying on some strong
approximations, like excluding inter-procedural data rela-
tions and aliasing [10, 6, 16], thus limiting the scalability
and the e↵ectiveness of the approaches.

In my PhD research I want to directly tackle the complex-
ity and imprecision problems of data-flow testing. I plan to
address these two problems by defining a new hybrid tech-
nique that combines static and dynamic analysis to obtain
more precise data-flow coverage indicators and test cases
that satisfy them. In particular, I propose to use dynamic
analysis to identify data-flow elements during the execution
of tests, and re-combine the dynamically observed elements
using small steps of static analysis to obtain not-yet-covered
and more precise test targets to be fed to an automatic test
case generator.

Identifying test targets dynamically can both help a test
case generator to easy the generation of test cases, by pro-
viding additional information on the feasibility of methods
and elements, thus avoiding to be stuck in the impossible
attempt of covering infeasible element; and strengthen the
precision of the coverage measurements, by limiting the pres-
ence of infeasible elements and including elements that de-
pend on aliasing and dynamic constructs.

2. RELATED WORK
Di↵erent techniques for automatic test case generation

have been designed to cover control-flow criteria, but little
attention has been dedicated to automatic data-flow testing.

A formal approach has been proposed by Hong et al. [9],
who applied model checking to derive test cases for data-
flow criteria. They represent the data-flow relations in the
program using a Kirpke structure, and express the coverage
criterion as a set of CTL properties. Then, a counterexam-
ple for such properties gives an input value that covers a
def-use pair encoded in the property. The paper proposes
di↵erent CTL properties for di↵erent criteria, but applies
the approach only to a single flow graph, and does not sup-
port inter procedural analysis.

Buy et al. [1] and Martena et al. [11] defined data-flow
testing approaches for intra- and inter-class testing, respec-
tively. Their approaches employ symbolic execution to ob-
tain the method pre-conditions that must be satisfied to
traverse definition-clear path for each def-use pair, and then
they use automated deduction to determine the order of
method invocations that allows satisfying the preconditions
of interest and the execution of a subsequent use. Current
limitations of static analysis and theorem provers limit the
applicability of the approach in practice.

Search-based techniques has been investigated for data-
flow testing by some researchers, but all of the proposed
approaches either have been demonstrated only on small
programs or mostly focused on intra-procedural data-flow
relations. Wegener et al. [17] firstly expressed data-flow cov-
erage requirements as a “node-node”fitness functions, where
the search is guided towards reaching the definition node,
and then from there towards reaching the use node. Some
experimental results on small example classes have been pre-
sented later by Liaskos and Roper [10], and Ghiduk et al. [6].
More extensive results have been presented in the work by
Vivanti et al. [16] that extended the data-flow fitness func-
tion for evolving a whole test suite. The technique was suc-
cessfully applied on a large set of programs, but it used a
simplified data-flow analysis that excluded alias information
and approximated inter class relations.

3. RESEARCH GOAL AND CHALLENGES
In my PhD research I plan to investigate the possibility

of automatically generating e↵ective test cases for object
oriented systems, exploiting dynamic data-flow information.
As discussed above, existing work suggests that data-flow
testing can be particularly e↵ective for testing the inter pro-
cedural interactions of object oriented systems, but current
approaches based on static analysis seem to be strongly lim-
ited by their complexity and imprecision. These limits are
currently mostly witnesses by examples or demonstrated on
small set of simple programs. We then deal with the first re-
search question RQ1: what are the limits of static data-flow
testing approaches for object oriented systems?

The underling idea of my research is that we can overcome
the limitation of static approaches, and strengthen the con-
fidence on the data-flow coverage domain, by employing dy-
namic analysis. This leads to the second research question,
RQ2: can dynamic data-flow analysis identify a reasonable
set of coverage elements for data-flow testing?

Finally, the last research question investigates the possibil-
ity of using the dynamically obtained data-flow information

Table 1: ExperimentA, metrics and coverage data for each project.

Test Cases Coverage (median)

Prj #eloc Bundl. Gen. Total eloc branchdefuse

JFreeChart 55 k 2022 24462 26484 0.93 0.83 0.50

JGAP 15 k 1398 5411 6809 0.86 0.78 0.29

Collections 13 k 12836 7768 20604 1.0 1.0 0.33

Lang 11 k 2051 9225 11276 1.0 1.0 0.0

XmlSecurity 10 k 89 7520 7609 0.78 0.65 0.12

JTopas 3 k 209 1583 1792 0.98 0.90 0.27

for test case generation, RQ3: how e↵ective are test cases
generated using dynamic data-flow analysis?

4. RESEARCH APPROACH AND
EXPECTED CONTRIBUTIONS

I plan to answer RQ1 empirically with a set of experi-
ments that measure the impact of infeasible and hard to ex-
ecute elements identified with state of the art data-flow ap-
proaches. I expect to collect quantitative information about
the e↵ectiveness of data-flow criteria and confirm the general
hypothesis of a big impact of infeasibility and complexity on
covering complex software systems.

I plan to answer RQ2 by defining a technique for dynamic
data-flow analysis. Such analysis, that we call DReaDs (Dy-
namic REAcing Definition analysiS), will identify data-flow
elements revealed while executing object oriented software
systems. To this end, DReaDs will monitor the definition,
usage and propagation of values while the application is ex-
ecuted (for example, with a test suite), and then abstract
and merge the information collected on multiple traces to
extrapolate data-flow test targets.

DReaDs will resolve alias relationships and identify the
data-flow elements according to the state of the references in
the system. For instance, DReaDs will both identify all the
objects impacted by the definition of a value and precisely
monitor data structures like arrays and collections.

To identify not-yet-covered test targets, DReaDs will in-
clude a small step of static analysis. The test targets that I
am interest into are pairs of reachable definitions and uses
of the same variables that occur in di↵erent methods [7].
DReaDs will compute such elements by pairing (dynami-
cally observed) definitions that can reach the exit points of
some methods with (dynamically observed) uses that can be
reached from the entry point of some other methods.

The main contribution of my PhD thesis will be the study
of the possibility of merging dynamic analysis and data-flow
analysis, to provide more precise data-flow information than
existing approaches.

The test targets identified with DReaDs will be fed to the
new approach that I am going to define to answer RQ3. I
will study the interplay between DReaDs analysis and dif-
ferent coverage-driven test case generation approaches, aim-
ing to design a new technique for data-flow testing. DReaDs
and test generation tools have complementary requirements,
the dynamic analysis needs test cases to identify test targets,
and the test case generator needs test targets to steer the test
generation process. I will investigate if and how a synergic
combination of the two techniques is possible, by defining a
technique that alternates steps of dynamic analysis and test
case generation to iteratively generate new test targets and
test cases that cover them.

The study of a new framework for data-flow testing will
contribute to the state of the research providing techniques
for automatic data-flow testing, and data about the e↵ec-

Table 2: defs@exit identified with DaTeC and DReaDs, with statistics per class and cumulative size of the di↵erence sets

dDT
: defs@exit with DaTeC dDR

: defs@exit with DReaDs Statically missed: Never observed:

Application Total Q1 Median Q3 Total Q1 Median Q3 #(2 dDR^ /2 dDT
) #(2 dDT^ /2 dDR

)

Jfreechart 20,513 2 9 38 89,415 3 18 75 85,079 (95%) 3,480 (17%)

Collections 3,908 2 4 12 63,460 4 26 81 62,169 (98%) 1,779 (46%)

Lang 1,227 2 3 14 1,638 2 5 13 1,122 (69%) 409 (33%)

Jtopas 1,481 3 12 16 8,380 6 39 320 8,026 (96%) 600 (41%)

JgraphT 1,800 2 4 16 6,602 1 7 44 6,080 (92%) 505 (28%)

28,929 2 6 18 169,495 3 17 68 162,476 (96%) 6,773 (23%)

tiveness of (dynamic) data-flow testing with respect to state
of the art approaches for testing object oriented systems.

5. CURRENT STATUS
In the first two years of my PhD I mainly focused on RQ1

and RQ2. In this section I describe the current status of
my research and the preliminary results.

5.1 Limits of Static Data-Flow Criteria
So far, I evaluated the e↵ectiveness of static data-flow test-

ing criteria with two experiments. In the first experiment,
I checked the ability of consistently achieving high data-
flow coverage. I selected five Java projects coming with an
existing (good) test suite. I augmented the existing suites
with the test cases generated with state of the art tools,
Randoop [13], CodePro AnalytiX1 and EvoSuite [5]. I com-
puted both branch and data-flow coverage, and I compared
the results. Table 1 reports the data on the size of the sub-
ject applications (column eloc), the size of the test suites
(columns Test Cases) and the obtained coverage (columns
Coverage). We observe that the enhanced test suites con-
sistently achieve high control-flow coverage, but fairly low
data-flow one. We confirmed the data statistically: a paired
Student’s t-test supports that the mean of data-flow cov-
erage per class significantly di↵ers from the mean of state-
ment and branch coverage that achieved on average 44%,
85% and 78% coverage respectively. These results confirm
that achieving high data-flow coverage is much more com-
plex that achieving high control-flow coverage.

To further investigate the reasons for the low data-flow
coverage, I first defined DReaDs to collect dynamic data-
flow information, as discussed below, and then performed
a second experiment to compare dynamically and statically
identified data-flow elements.

I selected five Java projects, and I computed both static
and dynamic data-flow information. I expressed the data-
flow information in terms of definitions that can reach an
exit point of a method (defs@exit). I collected the informa-
tion with DaTeC, a tool to collect data-flow coverage targets
statically [3], and DReaDs, a first prototype of the dynamic
technique that I will describe below.

Table 2 reports the data of the experiments. The first
two columns (defs@exit with DaTeC and defs@exit with
DReaDs) report the goal number of defs@exit in the two
cases (static and dynamic data-flow analysis) and the me-
dian and quartile per class. The number of definitions dy-
namically identified is consistently higher than the one stat-
ically identified. The last two columns of Table 2 report
the amount of defs@exit that were revealed with DReaDs
but missed with DaTeC, and the amount of defs@exit that
were statically identified but not dynamically observed, re-
spectively. The data indicate that the imprecision of the
outcome of static analysis is dominated by the statically

1
https://developers.google.com/java-dev-tools/download-codepro

missed relations (false negatives, 96%) over the not observed
relations (potential false positives, 20%), and support the
hypothesis that statically-identified data-flow elements miss
several data-flow relations that could be relevant to cover
while performing data-flow testing.

5.2 Dynamic Data-Flow Analysis
The core work of my PhD so far has been the definition of

DReaDs, a new dynamic data-flow analysis approach for ob-
ject oriented systems. DReaDs is a technique to dynamically
perform reaching definition analysis and compute data-flow
coverage.

The underlaying idea of DReaDs analysis is to use dy-
namic information about references between objects to pre-
cisely identify data-flow elements. One of the main limi-
tations of static approaches is that they identify data-flow
elements looking at the static declarations of variables in the
source code, thus introducing a strong approximation: the
propagation of the internal state of an object its not stati-
cally seen when the object is declared using an interface or a
superclass, and in general all the alias relationships are not
captured. DReaDs exploits dynamic analysis to overcome
these limitations.

DReaDs identifies data-flow elements more precisely by
intercepting data events during the program execution, and
identifying data-flow elements a↵ected by those events using
a model of the relations between active objects in memory
that is built and maintained at runtime.

The model is a graph that represents the existing instances
in memory (nodes) and the references between them (edges).
DReaDs monitors write and read events in memory and
when observes one of such events, it navigates the model
to retrieve the set of objects whose (possibly nested) inter-
nal state is defined or read in that particular instant. For
instance, if a modified object is in that moment part of the
state of two other objects, DReaDs registers two definitions,
one of the internal state of the first and one of the internal
state of the second object.

DReaDs aims not only to identify data-flow elements but
also to analyze the propagation of the assigned values
through the code that can be executed thereafter (reaching
definition analysis). To this end DReaDs maintains a map
of active definitions in memory and computes the dynamic
reaching definitions incrementally for each basic block exe-
cuted along a program execution according to the classical
data-flow analysis equation [12].

At runtime, DReaDs distinguishes data-flow elements de-
pending on the di↵erent instances that are a↵ected by a
data event. At the end of each execution, DReaDs abstracts
the information on instances identifying the data-flow ele-
ments using only their class type, and merges the abstracted
information collected on multiple traces in a single report.
DReaDs abstract the collected information in a format com-
patible to classes to be comparable with the data-flow infor-
mation computed with static analysis tools.

So far, I defined the main features of dynamic data-flow
analysis, and implemented a first version of DReaDs to ex-
periment with Java programs. I used the prototype in the
experiments described above and I am currently working on
additional experiments to understand advantages and limi-
tations of the approach and tune it.

5.3 Automatic Dynamic Data-Flow Testing
In the reminder of my PhD I plan to work on a technique

to generate test cases that cover dynamically-identified data-
flow targets. In a nutshell, the new technique will combine
DReaDs analysis, static analysis and a coverage-driven test
case generation approach, alternating phases of dynamic and
static analysis to identify coverage elements, with phases of
test case generation to cover them and discover new data-
flow targets. To identify coverage elements using DReaDs,
I extend DReaDs with a step of static analysis. DReaDs
dynamically computes a set of definitions and uses from the
execution of the program with an initial test suite. It then
statically couples definitions that reach the exist of the meth-
ods with uses that are reachable from the beginning of the
methods, identifying a new set of test targets (i.e. never cov-
ered definition use pairs) that focus on inter class testing, to
be covered with a test case generation approach.

In my work, I plan to study the interplay between dynamic
data-flow analysis and test generation techniques incremen-
tally. I plan to start with a simplified framework based on
a simple generation technique to investigate experimentally
possible problems of the new approach. I am currently mod-
ifying a feedback random testing approach to pair higher
probabilities methods that have been seen to propagate to
the exit definitions of variables, with methods that use those
variables. I plan to extend the current prototype to high-
light strengths and weaknesses of the combination of the two
approaches and identify new directions of improvement.

6. EVALUATION PLAN
To evaluate my approach I need to evaluate the failure

detection ability of the test suites generated with dynamic
data-flow testing. I plan to design several experiments of
increasing complexity using both known and seeded bugs,
measuring the e↵ectiveness of the approach as the amount
of real or seeded faults found in target applications.

Known faults require considerable e↵ort to be reproduced
and detected in absence of assertions, so I can likely use only
a limited set of them. I plan to complement known faults
with faults seeded with mutation analysis and to use muta-
tion score as a measure of the e↵ectiveness of the approach.

I will compare the results with test suites written by the
developers and test suites obtained with state of the art
automatic techniques that use di↵erent strategies.

As a side e↵ect I plan to provide a thorough evaluation of
data-flow testing and comparison with control flow testing.

7. REFERENCES
[1] U. Buy, A. Orso, and M. Pezzè. Automated testing of

classes. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 39–48. ACM,
2000.

[2] L. A. Clarke, A. Podgurski, D. J. Richardson, and
S. J. Zeil. A formal evaluation of data flow path
selection criteria. IEEE Transactions on Software
Engineering, 15:272–278, 1989.

[3] G. Denaro, A. Gorla, and M. Pezzè. Contextual
integration testing of classes. In Proceedings of the
International Conference on Fundamental Approaches
to Software Engineering, pages 246–260.
Springer-Verlag, 2008.

[4] P. G. Frankl and E. J. Weyuker. An applicable family
of data flow testing criteria. IEEE Transactions on
Software Engineering, 14:1483–1498, 1988.

[5] G. Fraser and A. Arcuri. Evosuite: automatic test
suite generation for object-oriented software. In
Proceedings of the ACM SIGSOFT Symposium and
the European Conference on Foundations of Software
Engineering, pages 416–419. ACM, 2011.

[6] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis. Using
genetic algorithms to aid test-data generation for
data-flow coverage. In Asia-Pacific Software
Engineering Conference, pages 41–48. IEEE, 2007.

[7] M. J. Harrold and G. Rothermel. Performing data
flow testing on classes. In Proceedings of Symposium
on Foundations of Software Engineering, pages
154–163. ACM, 1994.

[8] P. M. Herman. A data flow analysis approach to
program testing. Australian Computer Journal,
8:92–96, 1976.

[9] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and
H. Ural. Data flow testing as model checking. In
Proceedings of the International Conference on
Software Engineering, pages 232–242. IEEE, 2003.

[10] K. Liaskos and M. Roper. Hybridizing evolutionary
testing with artificial immune systems and local
search. In Software Testing Verification and Validation
Workshop, pages 211 –220, april 2008.

[11] V. Martena, A. Orso, and M. Pezzè. Interclass testing
of object oriented software. In Proceedings of the
International Conference on Engineering of Complex
Computer Systems, pages 135–144. IEEE, 2002.

[12] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In
Proceedings of the International Conference on
Software Engineering, pages 75–84. IEEE, 2007.

[14] S. Rapps and E. J. Weyuker. Selecting software test
data using data flow information. IEEE Transactions
on Software Engineering, 11:367–375, 1985.

[15] A. L. Souter and L. L. Pollock. The construction of
contextual def-use associations for object-oriented
systems. IEEE Transactions on Software Engineering,
29:1005–1018, 2003.

[16] M. Vivanti, A. Mis, A. Gorla, and G. Fraser.
Search-based data-flow test generation. In Proceedings
of the International Symposium on Software Reliability
Engineering. IEEE, 2013.

[17] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
test environment for automatic structural testing.
Information and Software Technology, 43:841–854,
2001.

[18] E. J. Weyuker. The cost of data flow testing: An
empirical study. IEEE Transactions on Software
Engineering, 16:121–128, 1990.

